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A multi-scale methodology for the study of the non-local geometry of eddy structures
in turbulence is developed. Starting from a given three-dimensional field, this consists
of three main steps: extraction, characterization and classification of structures. The
extraction step is done in two stages. First, a multi-scale decomposition based on the
curvelet transform is applied to the full three-dimensional field, resulting in a finite
set of component three-dimensional fields, one per scale. Second, by iso-contouring
each component field at one or more iso-contour levels, a set of closed iso-surfaces
is obtained that represents the structures at that scale. The characterization stage is
based on the joint probability density function (p.d.f.), in terms of area coverage on
each individual iso-surface, of two differential-geometry properties, the shape index
and curvedness, plus the stretching parameter, a dimensionless global invariant of
the surface. Taken together, this defines the geometrical signature of the iso-surface.
The classification step is based on the construction of a finite set of parameters,
obtained from algebraic functions of moments of the joint p.d.f. of each structure,
that specify its location as a point in a multi-dimensional ‘feature space’. At each
scale the set of points in feature space represents all structures at that scale, for the
specified iso-contour value. This then allows the application, to the set, of clustering
techniques that search for groups of structures with a common geometry. Results are
presented of a first application of this technique to a passive scalar field obtained
from 512 direct numerical simulation of scalar mixing by forced, isotropic turbulence
(Re, = 265). These show transition, with decreasing scale, from blob-like structures in
the larger scales to blob- and tube-like structures with small or moderate stretching
in the inertial range of scales, and then toward tube and, predominantly, sheet-like
structures with high level of stretching in the dissipation range of scales. Implications
of these results for the dynamical behaviour of passive scalar stirring and mixing by
turbulence are discussed.

1. Introduction

Observation of natural fluid flows indicates the presence of structures with apparent
repeating geometries. Vortical structures in multiphase flows are commonly observed.
The roll-up of an ocean wave before it breaks (pressure- and gravity-driven flow),
the swirling motion of a hurricane around its centre (pressure-driven flow affected by
Coriolis and friction forces) or that of the stellar gas accretion disk occurring during
the formation of galaxies (gravitational-driven flow), and the Kelvin—Helmholtz wave
clouds formed between two layers of air of different density and speeds (shear-driven
flow) are just a few examples. Turbulent fluid flows are no exception, often adding
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levels of complexity to the structure geometry owing to the multiple scales that
comprise such flows.

Visualization experiments have provided means for the systematic study of
geometrical structures in fluid flows and have substantially increased the number
of known flows where repeating geometrical patterns are present. Experimental study
of the flow past cylinders and spheres led to the discovery of the Karman vortex
street while experiments in turbulent mixing layers resulted in an exhaustive study of
‘coherent’ vortical structures (see Brown & Roshko 1974). This work has stimulated
theoretical analysis of pattern formation, for example the description of eddying
motions and flow patterns based on critical-point theory (see Perry & Chong 1987).

Direct numerical simulations (DNS) have also proven to be a valuable tool in the
search for geometrical structures in fluid flows, for example the organized cylindrical
elongated vortices (so-called ‘worms’) found in the intense vorticity of isotropic
turbulence (Siggia 1981; Kerr 1985; Jiménez et al. 1993). The ‘worms’, however, remain
a puzzle; their contribution to the kinetic energy dissipation is almost negligible and
their role in turbulence dynamics remains an open question.

Structures in turbulent flows can be considered a consequence of the forces and
boundary conditions driving the flow, but also can be seen as themselves producing
some intrinsic properties of the turbulence. In the multi-scale ansatz based on self-
similarity and the idea of energy cascade (Richardson 1922; Kolmogorov 1941,
1962), the external forces and the boundary conditions affect mainly large energy-
containing scales, with diminished influence on progressively smaller eddies. The
energy-containing scales then depend strongly on the external forces and boundary
conditions and are not expected to be universal, while small-scale structures may be
related to universal properties of turbulence, thereby exhibiting a generic geometric
signature that may be characteristic of efficient cascade dynamics. A geometrical
characterization of those structures could provide improved understanding of
cascade mechanics and dissipation-range dynamics, contributing potentially to the
development of structure-based models of turbulence fine scales (see Townsend 1951;
Tennekes 1968; Lundgren 1982; Pullin & Saffman 1993), subgrid-scale models for
large-eddy simulation (see Misra & Pullin 1997) and simulation methods based
on multi-resolution decomposition by means of the wavelet transform (see Farge
1992; Meneveau 1991; Farge et al. 1996; Farge, Schneider & Kevlahan 1999).
Further, a better understanding of eddy structure at large Reynolds number may
provide important insight into possibly singular or near-singular structures in the
dynamics of the Euler equations (see Hou & Li 2006) by elucidating the geometrical
characterization of sites within the turbulent field where extreme dissipative or vortical
events occur, and which are candidates for singularity formation in the limit of
vanishing viscosity.

Prior work on the identification of structures in turbulence addresses mainly the
identification of vortex tube- and sheet-like structures with emphasis on vortex
tubes. But the importance of sheet-like structures, where significant turbulent kinetic
dissipation may be concentrated owing to their high amplitude of strain rate, and
which may produce tubes by roll-up instabilities, has led to renewed interest in sheets.
Most methods either for tubes, or sheets or both, are based on local measures of
scalar fields obtained from the velocity-gradient tensor and/or the pressure field.
Chong, Perry & Cantwell (1990) classified regions with complex eigenvalues of the
velocity-gradient tensor as vortex tubes (since the local streamlines are then closed
or spiral in a reference frame moving with the fluid). The second-order invariant, Q,
of the velocity-gradient tensor was used by Hunt, Wray & Moin (1988), to define a
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vortex tube as the region with a positive value of Q, and the condition of a pressure
lower than the ambient, while Ashurst et al. (1987) based their identification criterion
on the sign of the intermediate eigenvalue of the rate-of-strain tensor, S. Analysis
of the relation between the vorticity field and the eigenvector associated with the
intermediate eigenvalue of the strain-rate tensor showed a tendency for both vector
fields to be statistically aligned. Tanaka & Kida (1993) extended the identification
criterion based on Q for the extraction of both tubes and sheets. Jeong & Hussain
(1995) proposed a method based on the second largest eigenvalue, A,, of the tensor L
formed by summing the products of the symmetric, S, and antisymmetric, £2, parts of
the velocity-gradient tensor with themselves, L = SS + 2. They define a vortex core
as the region where 4, is negative. Horiuti (2001) combined this methodology with
the physical explanations of the alignment of vorticity and the eigenvector associated
with the intermediate eigenvalue of S (Andreotti 1997) to develop a new method in
which the eigenvalues and eigenvectors of L are reordered based on their alignment
with the vorticity; then, regions are classified into vortex tubes, and so-called flat
vortex sheets and curved vortex sheets depending on the relations of those reordered
eigenvalues. Horiuti & Takagi (2005) proposed an improved method for the eduction
of vortex sheet structures, based on local values of the largest eigenvalue of the
tensor A;; = Si$2; + S;kS2, once the eigenvalue corresponding to the eigenvector
maximally aligned with the vorticity is removed. Based solely on the pressure field,
Miura & Kida (1997) developed a methodology for extracting axes of tubular vortices
as the loci of sectionally local minima of the pressure field (obtained by means of the
sign of the second largest eigenvalue of the pressure Hessian evaluated at each point;
positive values indicate pressure minima).

Most of the existing methods of identification are, nonetheless, local, and are based
on point-wise quantities used to discriminate whether the point belongs to one type of
structure or another (or none). Regions of points sharing a common identity based on
the local criterion applied can then be formed, but often that local analysis is the end
of the identification process. Visualization of such regions has proved a helpful tool
in its analysis, but here we seek a more automated, systematic approach to structure
characterization. An extended structural and fractal description of turbulence was
proposed by Moisy & Jimeénez (2004) who applied a box-counting method to sets
of points of intense vorticity and strain-rate magnitude (educed by thresholding).
They also analyse geometrically individual structures, defined as a connected set
of points satisfying the threshold criterion (thus, considering the spatial extent of
such structures), based on their volume and spatial distribution, finding that intense
vorticity and dissipation structures are concentrated in clusters of inertial size.

The present approach is based on a non-local multi-scale methodology for the
extraction, characterization and classification of structures in turbulence. It is non-
local, focusing on the spatial extent of structures. Conventional turbulence quantities
such as properties of the local velocity-gradient tensor are not used. The multi-scale
analysis is performed through the curvelet transform, a higher dimensional generaliza-
tion of the wavelet transform. In the present illustrative application, the structures
are defined as iso-surfaces, extracted at different scales, from a passive scalar field
convected and diffused by isotropic turbulence. The characterization and classification
steps are based on measures of the geometry of iso-surfaces. The problem of shape
analysis of free-form surfaces has been widely studied in the fields of computer
graphics, computer vision, and image understanding (see Campbell & Flynn 2001;
Iyer et al. 2005; Dorai & Jain 1997; Osada et al. 2001; Zaharia & Préteux 2001). Our
method characterizes each individual structure in terms of local differential-geometry
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properties. Structure identification in terms of non-local characterization is done via
area-based probability density functions of those geometrical properties. Classification
is based on this geometrical characterization of individual structures and is enhanced
via clustering techniques. Clustering algorithms allow the eduction of groups of
structures without the need for strong a priori assumptions about their properties.

This paper is organized as follows: a description of the three main steps of this
methodology — extraction, characterization and classification — is presented in §2, §3
and §4 respectively, with emphasis on the conceptual basis and on some particular
implementation details. In §5, a system test that validates the methodology applied
to a virtual world of modelled structures is presented. In §6, we show the results of
its application to the eduction of extended passive scalar structures obtained from a
direct-numerical simulation (DNS) database. We emphasize that the tools developed
here — the multi-resolution analysis, geometric characterization, spectral projection
and clustering algorithms — can be applied to many scalar and tensor fields in
turbulence, and in fields beyond fluid mechanics.

2. Extraction of structures

The main requirement imposed on the extraction process is to enable eduction of
structures associated with different ranges of scales. Although scale decomposition is
commonly defined in Fourier space, the nature of Fourier basis functions, that are
localized in wavenumber but not in physical space, makes top-hat window filtering in
Fourier space inappropriate for the purpose of educing structures that are extended
but compact in physical space. Thus, a transformation with basis functions that
are localized both in Fourier space, where the ranges of scales are defined, and in
physical space, where the structures are to be educed, is required. For this purpose, the
curvelet transform (Candes & Donoho 2003a,b) in its three-dimensional discretized
version (Ying, Demanet & Candés 2005; Candes et al. 2005) is used. Owing to
the multi-dimensional character of their definition, curvelets, unlike wavelets, are
naturally suited for detecting, organizing, and providing a compact representation of
intermediate multi-dimensional structures.

2.1. The curvelet transform

Curvelets, the basis functions of the curvelet transform, are localized in scale
(frequency/Fourier space), position (physical space) and orientation (unlike wavelets).
The frequency space is smoothly windowed in radial and angular spherical
coordinates, providing the decomposition in different scales and orientations,
respectively. For a given scalet, j, the radial window smoothly extracts the frequency
contents near the dyadic corona [2/~!, 2/*!]. A low-pass radial window is intro-
duced for the coarsest scale, jo. The unit sphere representing all directions in R? is
partitioned, for each scale j > jy, into O(2//%-2//2) = 0(2/) smooth angular windows,
each with a disk-like support of radius O(27//?). In a discrete three-dimensional data
field, of uniform grid of size n?, the last scale, which extracts the highest frequency
content, is given by j, = log,(n/2).

Denoting by f(ni, n,, n3) the scalar field, where 0 < n; < n, being n the number of
grid points in each direction, the discrete version of the curvelet transform (see Ying

1 The term scale, when referred to the index j in curvelet space, denotes in fact the range of
scales in physical space that results from the radial window filter in Fourier space.
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(1, 2z, i)

FIGURE 1. Frequency window U, , (darkened region) defined in the three-dimensional discrete
curvelet transform, extracting the frequency content near the wedge with centre slope (1, oy, B¢)
(figure based on Ying et al. 2005).

et al. 2005) provides a set of coefficients c¢?(j, £, k) defined as
P k)= Y fninyns)@P, (n1.ny,n3) 2.1)
ni,na,n3

where j, ¢ € Z, k = (ky, k», k3) (j represents the scale, £ the orientation and k the spa-
tial location); (pfz,k(nl, ny, n3) are the curvelets, which are defined in Fourier space by

O7ui(@) = Uje(o) exp (2.2)

where INJj,g(a)) is the frequency window f]j,e(a)) = Wj(w) Vj,g(a)), with Wj(a)) and
Vj,g((,()) the radial and angular windows. A Cartesian coronae is used, so that

W) = @4@);  Wi) = /02 (@) —}w),  j=jo,  (23)

where @ (w1, w2, w3) = ¢(27 w1) P27 wy) (2 w;3), and ¢ is a smooth function such
that 0 < ¢ < 1;itisequal to 1 on [—1, 1] and zero outside [—2, 2]. The angular window
for the ¢th direction is defined (for example, in the w; > 0 face of the unit cube) as

Vo) = (2 ) p (qurenfren) (24)

w1 w1

where (1, &, ;) is the direction of the centreline of the wedge (see figure 1) defining
the centre slope for the ¢th wedge. Wherever three smooth angular windows V;,,

V¢ and V; , overlap, they are redefined as (V;, V., V;)/ \/ V2 + V2, 4+ V2,
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W;(w) and V(o) satisfy

> Wiw) =1, z%: V2t —20)=1. (2.5)

Jj=jo t=—o0

Curvelets form a tight-frame in L?(IR3). Any function f € L*(R?) can be expanded
as f =2, ,:(®jexs f)®jex where ¢; ¢ is the curvelet at scale j, orientation ¢ and
position k = (ki, ks, k). Parseval’s identity holds: 3=, . | (f, #j.ex) I’= | f|]gs) The
effective longitudinal and cross-sectional dimensions (length and width), of curvelet
basis functions in physical space follow the relation width~length? (parabolic scaling).
As a consequence of this parabolic scaling, curvelets are an optimal (sparse) basis
for representing surface-like singularities of codimension one. These are three of the
most remarkable properties of the curvelet transform.

Here we apply the curvelet transform to a passive scalar field, at an instant in
time, that has resulted from mixing by a forced isotropic turbulent velocity field.
In what follows, we cast the discussion in terms of this example application but
again emphasize its broader applicability to other fields. The curvelet transform,
when applied to the passive scalar field, allows a multi-scale decomposition by
filtering in curvelet space the different scales of interest j = jo, ..., j., individually
or in groups. In addition, for anisotropic fields with privileged direction(s) (e.g.
shear flows), a multi-orientation decomposition may be useful for studying structures
according to their directionality (by using the angular window filtering in frequency
space of the curvelet transform (index £ in curvelet space)). Throughout this paper,
only the multi-scale decomposition is used, which could be also attained by other
multi-resolution techniques sharing the same choice of sub-band radial filtering
decompostion in Fourier space. Nevertheless, those capabilities that set curvelets
apart from other multi-resolution techniques, e.g. multi-orientation decomposition and
compact representation of surface-like singularities, justify its early implementation
within the frame of this methodology, enhancing its potential applications and
possibilities of expansion.

For each scale j = jy, ..., j., a new passive scalar field is obtained after filtering
all other scales (j/ # j) in curvelet space and inverse transforming to physical space.
Thus, a set of j,— jo+1 filtered scalar fields results from the original field. The volume-
based probability density functions of the filtered fields are, in general, different from
each other and from the original field; their comparison can be useful in determining
how the original scalar field is distributed among the different scales.

After this multi-scale analysis, a second step is applied in the extraction process,
by which the structures of interest associated with each relevant range of scales
are educed. Currently those structures of interest are defined as the individual
disconnected surfaces obtained by iso-contouring each filtered scalar field at particular
contour values (for example, the mean value of that filtered scalar field plus a multiple
of its standard deviation). See Appendix A for a physical interpretation of the educed
structures following this multi-scale decomposition plus iso-contouring procedure.

2.2. Periodic reconnection

In the case of scalar fields with periodic boundaries, an additional step is included
in the extraction process, to reconnect those structures intersecting boundaries with
their periodic continuation on the opposite boundaries.
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3. Characterization of structures

We seek a geometrical characterization able to distinguish structures based on
their shape. A two-step method is used: first, a suitable set of differential-geometry
properties is obtained locally (at all points of the surface), and then, area-based
probability density functions of those local properties are calculated, making the
transition from local to non-local (in the surface sense) possible.

3.1. Shape index and curvedness

Shape index, 7, and curvedness, A, (see Koenderink & van Doorn 1992) are the
differential-geometry properties chosen to represent locally the geometry of the
surface. They are related to the principal curvatures {k, k,} of a surface at a given
point by

2 2 2
Y = —= arctan <W> , A=/t (3.1)
T K1 — K> 2

T is scale-independent, whereas A is scale-dependent, having the dimensions of a
reciprocal length. The scaling is such that, for example, A at every point on a sphere
equals the absolute value of its reciprocal radius, 1/R, whereas the cylinder of radius
R presents A =1/ (ﬁR) for all points. The principal curvatures, {ki, k»}, are obtained
as the maximum and minimum values of the normal curvature, x,, in all possible
directions of the tangent plane defined at the point P of the surface of study. The
normal curvature, «,, at a point P in a given direction a of the tangent plane, defined
as the division of the second and first fundamental forms of differential geometry
applied in that direction, a, can also be interpreted as the inverse of the radius of
curvature, R, of the curve obtained as the intersection of the surface and the plane
defined by the direction @ and the normal N to the surface at the point P. Thus higher
values of the curvedness correspond to smaller radius of curvature (and, therefore,
more locally curved surface at P). All regular patches of a regular surface M map
on the domain (7, A) € [—1, +1] x R*, except for the planar patch, which has an
indeterminate shape index and nil curvedness (since k; = k; = 0).

The mapping (kq, k2) — (7, A) represents (see figure 2) a transformation from
Cartesian coordinates (ky, ;) to non-standard polar coordinates (7, A). For any
point in the (ky, x3)-plane, T contains the information on the direction (measured
as the angle, ¢, with respect to the axis x; —«;, rescaled into the range [—1, +1]
by T = —2¢/n) whereas A contains the information on the distance, p, to the
origin (rescaled as A = p/+/2). The convention chosen when ordering the principal
curvatures (k; = k) implies that only the region x; — x; = 0 of the (xy, k»)-plane is
accessible (see figure 2). Therefore, the polar angle ¢ can only have values in the
range [—n/2, +m/2], and, consequently, T~ = —¢>/%n € [—1, +1] covers all the possible
cases, thus making the mapping (k1, k2) — (7, A) injective (excluding the point
(k1, k2) = (0,0) from its domain) by eliminating the multi-valuedness of the arctan
function used in the definition of the shape index. The absolute value of the shape
index S = |7| represents the local shape of the surface at the point P, with 0 < § < 1.
Its sign indicates the direction of the normal, distinguishing, for example, convex from
concave elliptical points. Figure 3 shows the range of values of 7" and sketches of the
local shapes associated with representative values, with the names of corresponding
points. Figure 4 shows the mapping of both " and A in the plane of principal
curvatures.



108 I. Bermejo-Moreno and D. I. Pullin

% | eyt

p=\/§/l

K1—Ky

FIGURE 2. Transformation from (k1, k2) to (7, A).
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FiGURe 3. Range of shape index, 7", with its most representative associated local shapes.

In terms of the Gaussian and mean curvatures, K and H, the shape index and
curvedness can be expressed as

2 H
T = —— arctan <> , A=+2H?—K. (3.2)
m H>—K

3.2. Joint probability density function (p.d.f.)

From the pointwise 7" and A, a two-dimensional area-based joint probability density
function in the space of (S, A) can be obtained. Since A is scale dependent, in order to
compare the shape of surfaces of different sizes, a non-dimensionalization is required
for each surface. Selection of the appropriate length scale for this purpose is critical;
several can be obtained from global geometrical invariants of the surface, such as the
square root of its area (A), the cubic root of its volume (V), etc. Here we define

3v
C=uA, = —. 3.3
o n=— (3.3)
For the sphere, C = 1. The definition of a volume implies that the structure

under consideration is a closed surface. Thus, only closed surfaces educed from the
passive scalar field are studied. For homogeneous isotropic turbulence in a periodic
domain, for example, only those structures with infinite extent will not be closed.
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i A

FIGURE 4. Representative local shape in the combined (k1, k») plane.

All others, following periodic reconnection, will be closed. Another dimensionless
global parameter useful in the characterization of the geometry of the educed closed
structures is

s V2/3
which represents the stretching of the structure; the lower its value, the more stretched
the structure is. For the sphere A = 1.

The area-based joint p.d.f. 2(S,C), [ [2(S,C)dSdC = 1, contains non-local
information on the geometry of the surface. 2(S, C) can be geometrically interpreted
as a representation of how the local shape, S, is distributed across the different
(relative) length scales present on the surface, given by C, in terms of area coverage.
For closed surfaces, their geometry and topology are related by the Gauss—Bonnet
theorem, which imposes an integral constraint on the area-based joint probability
density function of S and C (see Appendix B for details).

3.3. Signature of a structure
We consider 2(S, C) plus its associated one-dimensional marginal p.d.f.s,

WS(S)=/9’(S, c)dc, %(C):/@(S, C)ds, (3.5)

to be the signature of the structure. This is complemented with its area A and 4,
representing the stretching of the structure. We find useful to display 2(S, C) mapped
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FiGure 5. Example of a three-dimensional surface (a) with S and C mapped onto it (bottom
and upper halves respectively) and its corresponding signature (b), for which a projection of the
three-dimensional physical structure is shown at the top right corner, its joint two-dimensional
probability density function (in terms of S and C) is presented in the bottom left area, while
the marginal probability density functions of both S and C, are drawn at its top left and right,
respectively. The value of the stretching parameter, /, is represented below the joint p.d.f. by
a black bar (in a scale from O to 1). Mean and feature centres, as well as upper and lower
distances for each variable of the joint p.d.f., are superimposed to the joint p.d.f,, as the filled
and hollow squares respectively (refer to §4).

onto the (S, C)-plane with greyscale rendering of #; white = 0, black = max(£).
Additionally, we plot Z5(S) and Z(C) on the S (top) and C (right) axes respectively;
see figure 5 for an example. This geometrical characterization is based on properties
of the structure that are invariant with respect to translations and rotations of
the reference system, and therefore, are suited for comparing structures based on
their geometry, the basis of the next step of this methodology: the classification of
structures.

Several methods have been proposed in the computer graphics literature for
estimating curvatures of a discretized surface (such as the ones that represent our
structures in the computational domain). A subset of them, applied to the case in
which the discretized surface is a triangular mesh, was here implemented and tested
(Chen & Schmitt 1992; Dong & Wang 2005; Taubin 1995; Meyer et al. 2003). Finally,
a modification of the algorithm proposed by Dong & Wang (2005) (based on Chen
& Schmitt 1992) is used. The only modification is the way in which the normal vector
to each face of the discretized surface is computed, following the method proposed
by Chen & Wu (2004).

4. Classification of structures

A process of classification assigns different elements of a given set to groups based
on the similarities of their signatures. In our system, the elements to be classified



Non-local geometry of turbulence 111

are the educed structures, and the signatures are given by 2(S, C), Zs(S), Z¢(C)
and A, obtained in the characterization step for each structure. Among the different
approaches to the problem of classification, we seek those involving as little a priori
knowledge as possible of the relationships governing the different groups and of the
number of groups present in the set of elements under evaluation. This leads to the
utilization of learning-based clustering techniques. The idea behind this approach is
to be able to detect other types of geometries apart from the known tube-like and
sheet-like structures in turbulence data bases, should they exist, by not imposing
strong assumptions on the groups.

4.1. Clustering algorithm

The clustering algorithm used in this classification step combines several techniques
found in the data mining, pattern recognition and artificial intelligence literature
(see, for example, Berkhin 2002 for a survey of such clustering techniques). It is a
locally scaled spectral partitional clustering algorithm that automatically determines
the number of clusters. Its main steps are summarized below using the notation
proposed by Ng, Jordan & Weiss (2001) in their NJW algorithm, that conforms the
core of our technique. Additions, particularizations and modifications to the NJW
algorithm are also described below. In what follows we denote a set of N structures at
a particular scale by the N elements E = {ey, ..., ey }. For each member of this set we
construct a set of parameters {p[k],k =1,..., N p} which will serve as the contracted
computational signature of the structure. These will be a finite set of moments of
2(S, C), 25(S), Zc(C), to be defined subsequently, together with 4. The p[k] will also
define a feature space of parameters in which the elements e; are mapped. Typically
N = 0(10*> — 10°), depending on the scale, and it will be seen that N, = 7.

(a) Start from a set of N elements E = {e,...,ey} and their corresponding
contracted signatures {p,, [k],k=1,...,N,}.

(b) Construct the distance matrix, d;; = d(e;, e;), e;, e; € E. The element d;; of the
distance matrix measures dissimilarity between the two elements ¢; and e; of E, based
on their signatures. Here we define the distance

dij = F({pe[k] — p,[kl.k=1,...,N,}) (4.1)

where p,, [k] is the kth parameter associated with element ¢;. The weighting function F
defines a distance in that space of parameters. For example, a functional dependence
of F of the form F(x) = (3, x?)"/? defines a Euclidean distance in the feature space
of parameters. R

(c) Construct a locally scaled affinity matrix A € RV*N defined by

A = Ay 4.2
g=exp|——L (42)
ivY%j

where o; is a local scaling parameter introduced by Zelnik-Manor & Perona (2004)
and defined as the distance of the element ¢; to its Rth closest neighbour, denoted by
er.i,»0i =d(e;, er,;) (a value of R = 7 is used, following Zelnik-Manor & Perona 2004).
The purpose of introducing a local scaling parameter is to take into consideration
the multiple scales that can occur in the clustering process, which is important, for
example, when tight clusters are embedded within more sparse background clusters.
Note that the elements of the diagonal of A are null. A

(d) Normalize A with a diagonal matrix D such that D;; = Zj.v:l A;;, obtaining the
normalized locally scaled affinity matrix L = D~'>AD™'/?
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(e) For N¢ varying between the minimum and maximum number of clusters
considered, do the following loop:

(i) Find the N largest eigenvectors xy,...,xy. of L and form the matrix X =
[x1,...,xy.] € RV*Nc, This step constitutes the spectral part of the algorithm.
It is intended to map the elements ¢; onto a different eigenspace where clusters
can be better identified. It can be considered a pre-clustering step, that combined
with the local scaling explained in one of the previous steps allows clustering of
elements with more complicated relationships among them (and to other clusters)
than traditional clustering techniques that do not use these features. For example,
concentric clusters can be easily educed by means of spectral clustering.

(i) Re-normalize the rows of X so that they have unitary length, obtaining the
matrix Y € RV*V¢ as v = X;;/(3°; X7)'*.

(iii) Treat each row of Y as a point in R and cluster them into N¢ clusters via
K-means algorithm.

(iv) Assign the original element e; to cluster k iff row i of Y was assigned to
cluster k in the previous step.

(v) Obtain optimality score for this number of clusters N¢ (see §4.3).

(f) After the previous step has been done for all the possible numbers of
clusters under evaluation, determine the optimum number of clusters based on the
minimization of the optimality score for each one of the possible numbers of clusters
(as will be described in §4.3).

The K-means clustering algorithm mentioned above is one of the simplest
partitional clustering techniques available. It first initializes the cluster centres (for a
given number of them). Then it assigns each element to the cluster with the closest
centroid to that element. After all elements have been assigned, it recalculates the
position of the cluster centres. The last two steps are repeated until the cluster centres
no longer move. Different implementations of the K-means clustering algorithm differ
mainly in the initialization of the cluster centres: we choose the initial position of the
first cluster centre randomly among all the elements; initial positions of subsequent
cluster centres are obtained as the farthest elements to the previously assigned cluster
centres.

4.2. Feature and visualization spaces; definition of the p[k],k =1,..., N,

The selection of the p[k] used to define the feature space plays a decisive role
in the classification step. Each structure will be represented by a point in that
feature space and its distance to the other points will define the similarity to their
corresponding structures. The number of parameters (dimensions of feature space)
should be sufficiently large to distinguish satisfactorily relevant groups of structures,
but at the same time, it should be kept as small as possible to avoid the so-called ‘curse
of dimensionality’ (see Bellman 1961) that affects unsupervised learning algorithms,
like the clustering method used in this methodology, compromising its success by
making the points too disperse in such high-dimensional space. The set of (seven)
parameters chosen here for each element e; of E is

(Pl k=1,...,7, ={8,C, 1, d5,df,d°,df} (4.3)

where S, C denotes the feature centre of 2(S, C) and d, dS, d€, d€ are the upper and
lower distances of the joint p.d.f. in each variable. The feature centre (3‘ ,C ) takes into
account the possible asymmetry of the joint p.d.f., correcting the mean centre (S, C)
so that the feature centre lies closer to the region of higher density of the joint p.d.f.

The upper and lower distances, d, and d;, can be regarded as the r.m.s. of the part
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FIGURE 6. Projections of the visualization space with the predominantly blob-, tube- and
sheet-like regions sketched: three-dimensional perspective pI‘O]eCthIl (a), two-dimensional

orthogonal prOJectlons (b) of the planes B (formed by the axes ¢ and A) and « (formed
by S and €). An example of a glyph consisting of a sphere and four bars along the +8,
+C axes can represent nine parameters of the characterization of the corresponding structure:

S.C, 4 given by the centre of the sphere, upper and lower distances of S and C given by each
bar, the surface area A of the associated structure, given by the size of the glyph, and the
group to which the structure belongs, given by the colour of the glyph.

of the p.d.f. above and below, respectively, its mean value. A graphical example can
be seen in figure 5, where the mean and feature centres have been superimposed to
its corresponding joint p.d.f.. Definitions of feature centre, upper and lower distances,
together with a representative one-dimensional example can be found in Appendix C.

Based on the idea of the feature space of parameters used for educing clusters
of similar structures, we define a visualization space, intended to provide a graphical
representation of the distribution of individual structures in a three-dimensional
space, providing qualitative and quantitative information. In general, the higher-
dimensional character of the feature space prevents its use as visualization space, but
the utilization of glyphs scaling and colouring allows more than just three dimensions
to be represented in the visualization space.

We define the three axes of the visualization space by S, C and /. Owing to the choice
of non-dimensionalization of the curvedness and the normalization factors (see §3), as
well as the intrinsic meaning of the shape index, curvedness and stretching parameter,
it is possible to identify regions in the visualization space with a particular geometrical
meaning for those structures whose representation lies in them. For example, blob-like
structures occupy the region near the point (1, 1, 1) (which corresponds to spheres);
tube-like structures are localized near the (1/2, 1, A) axis (4 being an indication
of how stretched the tube is) and the transition to sheet-like structures occurs as
the curvedness and 4 decrease. The plane C = 0 is the limiting case of planar
structure; furthermore, any structure composed of (predominantly) planar regions,
thus featureless in the curvature sense, will have a (nearly) nil €, independently of
its relative aspect ratios, that will nevertheless affect its A value. See Appendix D for
an analysis of these limiting values. Throughout this paper, the visualization space is
presented by a set of two-dimensional projections (see figure 6 for an example).

1 Note that a value of the shape index equal to 1/2 corresponds to locally cylindrical shapes,
that are predominant in tube-like structures. The dimensionless curvedness of a straight elongated
circular cylinder of radius R reduces to C = 3V/AﬁR ~ 3/2\/5 ~ 1.06.
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4.3. Optimality score: silhouette coefficient

The determination of the optimum number of clusters is based on the minimization
of an optimality score. Different approaches have been considered. Among them,
probabilistic criteria that consider the relative increment of complexity of a model
(set of clusters) when another parameter (cluster) is added, such as the Bayesian
Information Criterion (Schwarz 1978), were found to provide unsatisfactory results.
This is mainly due to the use of spectral techniques, since they map the elements
to be clustered onto a different eigenspace whose dimensions change with the
number of clusters considered, complicating the task of comparing the goodness-
of-fit for different number of clusters by such probabilistic methods. Instead, the
silhouette coefficient (Rousseeuw 1987), SC, is used. It is a confidence indicator of the
membership of an element to the cluster it was assigned. It is defined, for each element
e;, as SC; = (b; — a;)/ max(a;, b;), where q; is the average distance between element
e; and other elements in its cluster, and b; is the average distance to the items in the
closest cluster. It varies from —1 (lowest membership) to +1 (highest membership).
Being a dimensionless quantity, the mean and variance throughout all the clustered
elements can be used as indicators of the optimality of the clustering, and compared
among results for different numbers of clusters to determine the optimum number of
them. High values of the mean silhouette indicate a high degree of membership of
the elements being clustered to the clusters they were assigned, and low values of its
variance indicate that the majority of elements have a similar value of the silhouette.
The combination of both indications reflects a successful clustering.

Once the cluster centres have been obtained, it is also possible to retrieve the closest
elements to those cluster centres among the elements being classified. These closest
elements to the cluster centres can be considered as representative elements of each
cluster.

5. Application to a virtual set of structures

The validity and applicability of the last two steps (characterization and
classification) of the proposed methodology were tested on a virtual set of nearly 200
surfaces created using computer three-dimensional modelling tools. The extraction
step was not included in this test, since the starting point is the set of surfaces itself.
Nevertheless, modelled structures of very different sizes were included, to emulate the
multiple scales that would result from the extraction step, had it been included. Also,
the shapes of the modelled structures are all different. They could be visually classified
into three main groups with a common geometry: blobs, tubes and sheets. The target
of this test was to educe those three main groups automatically and without any
a priori knowledge of the possible geometries of the structures present in the dataset
or of the number of groups among them, that is, simply based on the characterization
and classification steps of the methodology previously explained. Among the modelled
sheet-like structures, approximately one third were given a certain rolling geometry
(spiral-like sheets).

Figure 7 shows the visualization space with the results of the test. Each sphere
in that space represents a structure of the virtual set (some examples are projected
onto the planar sides). The colour of each sphere in the visualization space indicates
the cluster to which its corresponding structure has been automatically assigned by
the clustering algorithm during the classification step of the methodology, and its
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FIGURE 7. Visualization space with clustering results for the virtual set of modelled
structures, with representative examples shown at the sides.

diameter is scaled using its associated silhouette coefficient, that represents, for each
structure, the degree of membership to the cluster to which it was assigned (refer to
§4.3), renormalized to have positive values that allow a comparison among structures.
For reference, the closest elements to the cluster centres have been highlighted using
cubes of slightly bigger size.

Three clusters were automatically educed in the classification step and each structure
was ‘correctly’ assigned by the algorithm to the appropriate group corresponding to
the previously constructed geometry. This can be seen in figure 7 from the relative
locations of the centres of the glyphs defined by S, C and 4 for each structure.
We emphasize that neither information on the previously constructed shapes nor
the number of groups to be educed formed any part of the clustering algorithm
(for example as pre-conditioning). The results of figure 7 are a consequence of
the geometric characterization and automatic classification in the feature space of
parameters.

We note also that in figure 7 (as was sketched in figure 6), the sheet-like structures
can spread over a large region near the plane C = 0 in the visualization space.
This region could be narrowed by means of a transformation of the (S, C)-plane to
Cartesian coordinates (X = C cos[n(S—1/2)], Y = C sin[n(S—1/2)]). This would bring
sheet-like structures to the axis (0, 0, 1) in the new visualization space. Nevertheless,
it is helpful to keep the original visualization and feature spaces, since that allows a
possible distinction of the different shapes of the structures that fall into the broadly
defined sheet-like geometry. For example, in the test case of the virtual set of modelled
structures presented here, the second optimum automatic clustering result was such
that four groups were educed: the blob-like and tube-like clusters remained the same
as in the optimum case of three clusters described above, but the sheet-like cluster was
split into two, with one of these clusters containing a large proportion of structures
with a rolling geometry (spiral-like sheets). This also suggests that further post-
processing (ideally also automatic) of the educed clusters can be helpful in refining
the results.
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FiGUure 8. Cubic plane cuts of the passive scalar fluctuation field for the original database (top
left) and each of the filtered scales resulting from the multi-scale analysis (filtering in curvelet
domain) (increasing scale number from left to right and top to bottom).

6. Application to the passive scalar fluctuation field of a numerical
turbulence database

6.1. DNS database

We use a numerical database obtained from a DNS with 512% grid points. The
incompressible Navier—Stokes equations for the velocity field and the advection-
diffusion equation for the passive scalar were solved by means of a Fourier—Galerkin
pseudo-spectral method. The domain is a cube of side 2n with periodic boundary
conditions. The velocity field was forced at large scales, becoming statistically
stationary in time. A mean scalar gradient was imposed so that the scalar fluctuation
field became also statistically stationary in time. Despite the mean scalar gradient
applied, the scalar fluctuation is statistically homogeneous. The Reynolds number
based on the integral length scale is 1901, whereas the Taylor Reynolds number
is Re; = 265. The Schmidt number of the simulation is 0.7. The product of the
largest dynamically significant wavenumber, k.., and the Kolmogorov length, 7, is
knaxn = 1.05. More specific details of the database can be found in O’Gorman &
Pullin (2004).

6.2. Multi-scale diagnostics

We apply our methodology to the passive scalar field given by the passive scalar
fluctuation at an instant in time. For the given resolution of 512° grid points, and a
coarsest scale j, = 2, the curvelet transform provides seven scales. They will be named
by a scale number, from 0 to 6; increasing values of the scale number correspond to
smaller scales. Thus, scale 0 captures the largest scales and 6 the smallest. Figures 8
and 9 show the result of the multi-scale analysis based on the curvelet transform.
Plane cuts of the original database and each of the filtered scales (filtered in the
curvelet domain and then inverse transformed to the physical domain) are shown.
Three-dimensional views with plane cuts in the three directions of the volume data
are presented in figure 8, and more detailed plane cuts normal to the z-direction at
half the length of the cube are shown in figure 9. Volume-data p.d.f.s obtained for the
scalar field associated with the original database and for each of the filtered scales,
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FIGURE 9. Plane cuts normal to the z-axis at its midpoint of the passive scalar fluctuation field
for the original database (top left) and each of the filtered scales resulting from the multi-scale

analysis (filtering in curvelet domain) (increasing scale number from left to right and top to
bottom).
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FiGURE 10. Volume-data p.d.f.s of the passive scalar fluctuation field (a) and corresponding
spectra (b), associated with the original database and each of the filtered scales.

figure 10(a), give insight into the distribution of the scalar values at the different
scales and their contribution to the total field (original data base). For this scalar
field, the p.d.f:s tend to become narrower for increasing values of the scale number,
that is, for smaller scales. Scalar fluctuation spectra are also computed for the original
volume data field and each filtered scale and are shown in figure 10(b). The effect
of the curvelet filtering in the Fourier domain can be observed. This differs from a
top-hat window filtering in that domain, in order to preserve the localization in the
physical domain. It can be noticed that scales 1, 2 and 3 correspond mainly to the
inertial range of scales, whereas scales 4 and 5 are mainly dissipation scales. From this
observation and from figure 10(a) we note that those p.d.f.s associated with the scales
corresponding to the inertial range (1, 2 and 3) are very similar, almost collapsing in
that plot.

Additionally, an equivalent multi-scale decomposition is done for the velocity field.
That allows us to define characteristic squared integral velocities, u#?, and integral

i
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Scale u?/u? Li/n Li/n
original 1.000 249.6 249.6
0 0.591 226.9 383.8

1 0.155 14.68 96.1

2 0.113 5.235 46.2

3 0.085 1.927 22.8

4 0.044 0.519 11.9

5 0.011 0.070 6.3

6 0.001 0.004 33

TaBLE 1. Breakdown of characteristic integral velocities and length scales
for the filtered scales.

length scales, L; and L}, for each filtered scale, i, in the same terms in which they are
defined for the original velocity field. For the case of isotropic turbulence, they can
be expressed as

i =3 [ Ewa (6.1)
3 Jo
T *® El(k)
L= — dk, 6.2
u? Jo  k (6.2)
/ T * El(k)
L[ = = dk, 6-3
u? ok ()

where E;(k) is the energy spectrum associated with scale i, and the absence of a
subindex refers to the original velocity field. It follows from (2.5) that the sums of
the energy spectra and the characteristic squared integral velocities of the all filtered
scales are equal to those of the original velocity field, E(k) and u? respectively:

E(k) = Ei(k), (6:4)

ul =y ul. (6.5)

Table 1 shows, for the original velocity field and for each filtered scale, the
characteristic squared integral velocity and the characteristic integral length scale,
and how they compare to the total characteristic squared integral velocity, u?, and
the Kolmogorov length scale, 7.

6.3. Geometry of passive scalar iso-surfaces

After the multi-scale analysis, iso-surfaces are obtained for each of the filtered scales.
The contour values are, for each filtered scale, the mean value of the scalar field plus
two times the standard deviation of that field (mean and standard deviation values can
be obtained from the first- and second-order moments of the volume p.d.f.s presented
before) (see figure 11). Those iso-surfaces corresponding to the same relative contour
value at each scale will be characterized and classified and their results compared
among the different scales. We also remark that an additional step in the extraction
is applied to periodically reconnect those structures intersecting boundaries with their
continuation on the opposite boundaries; this reconnection is performed for each
individual filtered scale. Both the largest scale (0) and the smallest scale (6) are not
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FIGURE 11. Iso-contours of the passive scalar fluctuation field for the original database (top
left) and each of the filtered scales resulting from the multi-scale analysis (filtering in the
curvelet domain) (increasing scale number from left to right and top to bottom). A contour
value equal to the mean plus two times the standard deviation of each resulting scalar field
was used.

considered in the process: the largest scale is of less relevance in this analysis since
its structure is expected to depend on the boundary conditions and external forces
applied. The smallest scale is excluded to avoid the extraction of spurious structures
and/or an erroneous geometrical characterization that could result from the lack of
grid resolution, or aliasing effects at that scale. Thus, the scale numbers under analysis
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FIGURE 12(a—c). For caption see facing page.

are 1-5. In the same spirit, a minimum number of points (300) was considered for a
structure to be analysed, so that it is smooth enough for a reliable calculation of its
differential-geometry properties, the basis of the characterization step.

Then, each structure is geometrically characterized as described in § 3 and, based on
the parameters extracted from its signature, it can be represented in the visualization
space referred in §4. Figure 12 shows the distribution of glyphs representing each
structure, for the different scale numbers 1-5 considered. In this case, glyphs are
spheres whose centres correspond to the S, C, A parameters and whose radii are
scaled according to the surface area of the structure, and their colour is assigned
based on the scale number to which the structure belongs. First, structures of all
scales are shown and then the progression for individual scales is presented. As can
be seen, the structures go from predominantly blob-like and tube-like at scales 1-3
toward more sheet-like structures at the smaller scales 4 and 5, The stretching of
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FIGURE 12. Visualization space with spheres representing the structures educed from the
passive scalar fluctuation field at all scales (a) and scale 1 (b), scale 2 (c), scale 3 (d), scale 4 (e)
and scale 5 (f). Radii of spheres represents (in normalized logarithmic scale) the surface area
of each structure. Colour of the spheres represents the scale to which the structure belongs:
dark blue (1), light blue (2), green (3), yellow (4), red (5).

the structures increases with the scale number, that is, the parameter A decreases for
smaller and smaller scales.

Some representative structures, named A-L, have been selected (see figure 12a);
their corresponding signatures are shown in figure 13. The cascade in the passive
scalar fluctuation spectrum is thus translated into a cascade of the representation
of structures in the visualization space, that starts near the point (1, 1, 1) (sphere)
and evolves toward highly stretched sheet-like structures whose geometry tends to
be complex (see for example their corresponding signatures in the last few points in
figure 13).

The clustering algorithm is then applied to the structures. The set of parameters

AA

{S,C, A, df,d>,df,dC} is used to form the feature space where each structure is
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FIGURE 13. Signatures of representative structures (refer to figure 12(a) for the location of
the corresponding points (A—L) in the visualization space).

represented by a point. Three groups of structures are obtained, and the result can
be seen in figure 14. That figure shows a visualization space with the same three
spatial coordinates as in earlier plots (S, C, Z), and the structures represented by
glyphs consisting of spheres (coloured by the cluster ID and with radius scaled by
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1.0

FIGURE 14. Result of the clustering algorithm in a visualization space showing spheres
representing structures with radii scaled by their silhouette value (renormalized to have only
positive values) and coloured by the cluster to which they belong. An optimum number of three
clusters was automatically found. The seven clustering parameters used to define the feature
space are shown for each structure by the centre of its representing sphere (of coordinates

3‘, C, A) and the four bars scaled by the value of d,, d; of S and C.

the silhouette coefficient, defined in §4.3, that indicates the level of membership to
the cluster to which it has been assigned) and horizontal bars with origin at the
centre of the sphere and lengths proportional to the other four parameters used for
clustering (distances d, and d; in +S and +C directions). The thickness of these
bars is also scaled by the silhouette value. Although the clustering algorithm captures
the main trends, the structure geometries appear continuously distributed across the
main groups, rather than separating into well-differentiated groups. This translates
into the distribution of points and glyphs representing structures in the feature and
visualization spaces: in particular, glyphs associated with the educed structures are
organized as a cloud in the visualization space, transitioning from one region to
other regions. For example, a comparison of the clustering results for the passive
scalar field (figure 14) and the test case of modelled structures (figure 7) previously
presented in §5 clearly shows the difference between the continuously distributed
geometries of the structures educed for the passive scalar field and the well-distinct
groups of geometries found in the test case. As a result, for the case of the passive
scalar, some of the structures classified as belonging to one group but lying on the
overlapping regions in the feature space will not necessarily be significantly different
(geometrically) from other structures that belong to other groups but with a similar
location in the feature space. The degree of membership to the educed clusters
(measured by the silhouette coefficient) of those structures in the overlapping regions
between clusters will therefore be lower than that of structures near the cluster centres.
Note how the glyphs in figure 14, scaled by the renormalized silhouette coefficient of
the associated structures, are smaller in the overlapping regions (compare for example,
figure 12(a), where the density of points is much more homogeneous throughout the
whole distribution, since the scaling factor in that case was the area of the structure,
not its silhouette coefficient).
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6.4. Discussion and physical interpretation

We discuss first the smallest scales. Figure 12( f) shows that highly stretched sheet-like
structures are predominant at those scales. From the size of the spheres representing
the structures (related to the surface area of the structures in a normalized logarithmic
scale), we conclude that the larger of these structures appear more stretched (lower
A) and tend to be more sheet-like (lower C). This trend is in agreement with the
results of Schumacher & Sreenivasan (2005), who, using a conventional box-counting
method, found that passive scalar isolevel sets at the smallest scales become smooth
sheets. They did not find fractal structure in the passive scalar field within their range
of Sc and Re;, which differ from present values. Schumacher & Sreenivasan also used
the area-to-volume ratio of the isolevels, which is essentially the parameter 4 used in
our methodology to form the dimensionless curvedness C: they use this in a global
sense rather than applied to individual structures as is done here. In the study of
intense strain structures in homogeneous isotropic turbulence by Moisy & Jiménez
(2004), the dominance of sheet-like structures in the smallest scales, suggested by a
similar box-counting method, was confirmed by the geometrical study of aspect ratios
of individual structures.

Multi-scale decompositions of the vorticity field in turbulent flows have been
previously applied using orthogonal wavelets in two and three dimensions (see Farge
et al. 1999, 2001, 2003), where thresholding of the wavelet coefficients based on
denoising theory separates the vorticity into two orthogonal fields, denoted as coherent
and incoherent vorticity. It is found that the coherent field is responsible for most of
the energy transfer in the large and inertial scales. In three-dimensional homogeneous
isotropic turbulence, the p.d.f. of the coherent vorticity is found to be stretched
exponential while the incoherent vorticity is exponential. We find that the p.d.f. of the
scalar fluctuation (see figure 10) is Gaussian, with sub-Gaussian tails, in agreement
with previous results for scalar fields (Overholt & Pope 1996; Celani et al. 2001). In
our multi-scale decomposition (see figure 10), the variance of the p.d.f.s also decreases
for smaller scales (resulting in narrower p.d.f.s), quickly transitioning from Gaussian
(with slightly sub-Gaussian tails) to exponential. Our multi-scale analysis does not
include any assumptions about the ‘coherence’ of the educed structures through
thresholding of the multi-scale coefficients, since it has a different purpose, mainly as
a diagnostics tool.

It has been suggested that exponential tails of the scalar fluctuation p.d.f.s are linked
to metrics of anomalous mixing (see the discussion in Warhaft 2000). There have been
attempts to clarify the conditions under which sub-Gaussian/exponential tails appear
based on various factors that include relative simulation box size (Overholt & Pope
1996; Schumacher & Sreenivasan 2005), Reynolds number (distinguishing between
soft and hard turbulence (Jayesh & Warhaft 1992)), flow initial conditions and forcing
(Jaberi et al. 1996) and, for the vorticity, the structure of intense portions of the field
(Siggia 1981; Kerr 1985; Jiménez et al. 1993). The transition, seen in figure 10, from
Gaussian p.d.f. in the larger scales to predominantly exponential p.d.f.s in the smaller
scales may be related to the geometry of individual structures present at each scale.

The presence of ramp—cliff structures in the scalar field (plateau—cliff in the scalar
fluctuation) (Antonia et al. 1979) has been associated with anisotropy of the passive
scalar field in the presence of a mean gradient (Celani et al. 2001; Overholt & Pope
1996; Warhaft 2000). These features are seen in the large scales (plateau regions) as
well as in the small scales (cliffs of fronts), where steep changes in the values of the
passive scalar occur (see figure 9). The highly stretched, sheet-like structures found
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here at the smaller scales could be related to these fronts. A study of their spatial
distribution with respect to proximity to the structures of the larger scales would be
needed to confirm this. Further, the predominant orientation of the sheet-like regions
of such structures could help to clarify their role. This could be obtained within the
framework of the present methodology using the multi-orientation decomposition of
the curvelet transform (not applied in this paper).

For the present Sc and Re we know of no previous reports of blob- and tube-
like (with moderate stretching) structures in the intermediate scales of the passive
scalar fluctuation field. Theoretical developments in physical models of passive scalar
mixing have utilized tube-like structures, stretched by large-scale strain fields, to
analyse cascade and dissipation dynamics for a passive scalar (Pullin & Lundgren
2001). Small-scale scalar mixing is modelled as a two-dimensional blob (a tube in
three-dimensions) convecting, deforming and diffusing in the presence of the swirling
motion of a stretched spiral vortex. The blob is drawn out into rolled-up sheets whose
azimuthally averaged structure remains tube-like. Within this compound tube-sheet
structure, the derived scalar spectrum comprises two parts in the form of Batchelor
(1959) k~' and Obukov—Corrsin k=33 (see Tennekes & Lumley (1974)) components.
The k=3/* contribution arises from the non-axisymmetric scalar field which tends to
be sheet-like. This dynamical model is not inconsistent with the present findings of
tube and sheet structures at the smallest scales. We can hypothesize that blob-like
structures, similar to structure A shown in figure 13, are created first. These are then
strained and stretched by the action of vortex tubes (D, E, F) to form vortex sheets
(J, K, L). Further vortex tubes are then created by rolling-up of the sheets. Additional
support for the validity of this picture as a physical mechanism of the cascade would
probably require (at least) local correlation in tube and sheet structure locations and
perhaps orientations, for adjacent scales in the sense of the curvelet transform. This
is beyond the scope of the present study.

7. Conclusions

A methodology for the identification of structures based on their geometry, and
its present application to a numerical database of the mixing of a passive scalar
in homogeneous isotropic turbulence, have been presented. Our goal has been to
develop a methodology that can compensate for the computational bottleneck of
DNS computing for turbulent flows, and to provide a solid mathematical framework
for non-local characterization of the flow structures based on existing data sets. The
main characteristics of this methodology, in comparison with previously existing ones,
are its multi-scale and non-local character. The multi-scale nature, implemented by
means of the curvelet transform, provides the framework for studying the evolution
of the structures associated to the main ranges of scales defined in Fourier space,
while keeping the localization in physical space that enables a geometrical study of
such structures. We note that the multi-orientation decomposition included in the
curvelet transform, not used in this study, can be useful when analysing other flows in
which the directionality of the structures can play a significant role, such as channel
flow. The non-local character of the methodology is achieved through the calculation
of area-based probability functions of the differential-geometry properties of the
surface under consideration. It is also a generic methodology, not intended to educe a
particular kind of geometry, but able to manage and classify all possible geometries.
There are three main steps involved: extraction, characterization and classification
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of structures. Individual structures (considered as closed surfaces disconnected from
each other) are studied.

From its application to the passive scalar fluctuation field advected and diffused
in homogeneous isotropic turbulence, the following conclusions can be drawn. First,
the multi-scale decomposition resulted in a set of scalar fields (associated with the
different ranges of scales extracted) with volumetric probability density functions of
decreasing width for smaller scales. In addition, those probability density functions
corresponding to scales approximately in the inertial range tend to overlap. Secondly,
the study of the structures educed for the different scales shows a transition of
their geometry from predominantly the blob-like and tube-like kind in the inertial
range of scales toward sheet-like structures in the dissipation range. The dominant
structures become more and more stretched for the smaller scales. This transition of
geometry is smooth, complicating the automatic classification of structures. There are
not clearly distinct groups of structures with a common geometry, but a continuous
distribution of them filling the spectrum of present geometries instead. Thus, the
application of the clustering algorithms is more challenging. In this case, three groups
were educed automatically by applying the clustering technique implemented, and
their projection in the visualization space and the identified cluster centres agree
with the comments stated above. Nevertheless, clustering results are to be used with
care in these conditions in which the points are so continuously distributed in the
feature space used for clustering. Alternatives to the currently implemented K-means
clustering algorithm, such as fuzzy c-means clustering or density-based clustering,
more oriented toward educing intermingled clusters without clear boundaries can be
considered. Also, the addition of other relevant parameters in the clustering process
may be useful to allow more separation.

Future work could include the application of this technique to other scalar fields,
such as the vorticity magnitude and other local Galilean invariants derived from the
velocity-gradient tensor. The study of the relation of the passive scalar structures to
these and other fields such as scalar dissipation, local enstrophy and local mechanical
dissipation may illuminate local dynamical processes. Applications in the tracking
and evolution in time of individual Lagrangian structures and their developmental
geometry may also be useful.

The modular character of the implementation of the present methodology, a
consequence of its conceptual division into the three main steps of extraction,
characterization and classification, should facilitate future algorithmic improvements
corresponding to each step. Also, the addition of other modules, such as a time tracker
for studying the temporal evolution of the geometry of structures, can be achieved by
adding a new layer on top of the existent implementation, When combined with the
visualization space already presented in this paper, this may facilitate the search for
potential geometrical attractors in a suitable feature space.

The requirements of our implementation and application of this methodology to
the 512° passive scalar database do not exceed the computational resources offered
by a normal desktop or laptop computer.

The authors are grateful to P. O’Gorman for providing the numerical turbulence
database, and to E. Candes and L. Ying for valuable discussions regarding the
curvelet transform and for providing, along with L. Demanet, the Curvelab software
on which our implementation of the multi-scale filtering in curvelet space is based.
This work has been supported in part by the National Science Foundation under
Grant DMS-0353838 and DMS-0714050.
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Appendix A. Interpretation of extracted structures

Here we give an interpretation of the physical meaning of the educed structures
at different scales resulting from the extraction step of the present methodology. For
simplicity and clarity, a two-dimensional scalar field is used. A 1024 x 1024 grey-scale
image (with values in the range [0 — 255]) (see top left of figure 15) obtained from
a particular realization of a Julia set has been chosen as the scalar field. This set is
of interest since it contains self-similar structures at different scales. The outer region
has been faded to white so that all boundaries have the same value.

The extraction procedure described in the main text is applied to the two-
dimensional image. The result of the multi-scale decomposition provided by the
curvelet transform can be seen on the left images of figure 15. The effect in Fourier
space is shown by the spectra on figure 16(b), while figure 16(a) shows the bin p.d.f's
of the original and filtered fields, in physical space. Note that, in this case, the low-pass
filter used for the coarsest scale is (in logarithmic scale) wider than the others. It can
be thought as two scales merged into one (the coarsest scale, in this case), and could
be done also for other groups of scales.

Each filtered field (image) corresponding to each scale is then iso-contoured at a
value equal to its mean plus 3/2 times its standard deviation: see right plots on
figure 15. The original field has also been iso-contoured (top right) for comparison.

From the way in which the decomposition is done, as observed in the spectra,
the structures educed for each filtered scale have a correspondence with the different
‘energetic’ bands of the field, as defined by frequency corona in Fourier space. But
furthermore, they also have a direct correspondence in physical space with the
structures of the original field (features of the image). First, we notice that the spatial
localization of the features (structures) educed for each scale is retained, with respect
to the original image. As expected, they vary in relative sizes (scales), from one filtered
scale to the next. Some features of the original image that span across different scales
are split as a result of the decomposition. See, for example, the dark continuous arm
of the spiral: scale 0 captures its largest portion, but the remainder can be seen also in
the rest of the scales. The geometry of each part resembles that of the structure from
which it was derived. Shape is preserved and thus a geometrical analysis of the educed
structures is meaningful in this context. The iso-contour obtained from the original
field (top right of figure 15) contains a large individual structure, rich in features, and
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a few simpler structures, but is missing many other features of the original image. In
contrast, contours of the filtered fields tend to contain many more (simpler) structures
that capture the essential features of the original field at that scale. The fact that the
spatial localization is kept can be used for the study of relative positioning, clustering
and other organizational aspects of the sets of structures.

The extension of this reasoning to three dimensions is immediate. The complexity
of the structures that can be found increases. For example, structures that appear as
circular in two dimensions could become either blob- or tube-like, while elongated
structures in two dimensions could become either tube- or sheet-like structures. We
note that an alternative to the multi-scale decomposition of the scalar field applied
here is to perform a multi-resolution analysis applied to the iso-contours extracted
from the original database. Since there is a loss of information by iso-contouring, we
choose to perform the multi-scale decomposition first over the entire field and then
iso-contour each of the filtered scales.

As an analogy, consider the decomposition of a tree into its trunk, branches, leaves,
etc. The outer surface of the tree, containing all those elements, would correspond
to the iso-surface of the original field. It is generally too rich and complex to
study as a whole. By applying a multi-scale decomposition before iso-contouring,
we can separate the tree into its individual components, ranged by the scale. Then,
iso-contouring extracts structures at those different levels, whose properties can be
studied individually. This is the philosophy applied in our methodology for the study
of structures in turbulence. In the same manner that the geometry of the elements
of a tree has a relation to their physical functionality, perhaps that is also the case
for those structures present in turbulent flows. A multi-scale decomposition followed
by surface identification (by iso-contouring based on global contour values or other
means) seems an appropriate framework for this study. Its current form can be
considered a starting point, but there is much room for refinement: use of additional
multi-resolution capabilities (as outlined in the body of the paper), such as multi-
orientation decomposition, selection of locally adapted contour levels for optimal
feature extraction are, for example, two possible paths for improvement.

Appendix B. Gauss—Bonnet theorem in the shape index, curvedness space

For any compact two-dimensional Riemann manifold without boundaries, M, the
Gauss—Bonnet theorem states that the integral of the Gaussian curvature, K, over the
manifold with respect to area, A, equals 27 times its Euler characteristic, x :

/KdA:2nX(M). (B1)

This formula relates the geometry of the manifold (given by the integration of the
Gaussian curvature, a differential geometry property) to its topology (given by the
Euler characteristic). The Euler characteristic of a surface is related to its genust
by x = 2 — 2g. From the relation among shape index, curvedness and mean and
Gaussian curvatures stated in §3 (see equation (3.2)), the following relation can be
obtained:

K = —A?cos(nY). (B2)

T The genus of an orientable surface is a topological invariant (as is the Euler characteristic)
defined as the largest number of non-intersecting simple closed curves that can be drawn on the
surface without disconnecting it.
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Then, the Gauss—Bonnet theorem can be restated in terms of the shape index and
curvedness as

/ A%cos(nT)dA = 4n[g(M) — 1]. (B3)
M

Furthermore, considering the non-dimensionalization of the curvedness also intro-
duced in§3, C=pA (u=3V/A, where V is the volume and A the area of the surface)
and taking into account that cosine is a symmetric function and thus cos(n?") =
cos(m|T|) = cos(nS), then (B 1) can be rewritten as

/ C?cos(nS)dA = dnu’[g(M) — 1]. (B4)
M

The left-hand side of (B4) can be expressed in terms of the {S, C} area-based joint
probability density function of the surface, (S, C):

/ C?cos(nS)dA = A - / / C? cos(nS)2(S, C)dsdcC. (B5)
M

Considering the stretching parameter, i = J/36m(V?*/3/A), also introduced in §3, the
Gauss—Bonnet theorem finally results in an integral relation between the {S, C} area-
based joint probability density function, £, the stretching parameter, A, and the genus
of the surface, g:

/ / C?cos(nS)2(S, C)dSdC = A*[g(M) —1]. (B6)

Appendix C. Definition of feature centre and upper and lower distances of a
probability density function

Consider a real-valued random variable X with probability density function f(x),
x € R. We define the feature centre X as

A {)‘c—d,\/l—(d,/du)z if d, < d,

)_C+du 1—(du/dz)2 ifdz>du

(C1)

where x is the mean or expected value of X, x = [xfdx. The lower and upper
distances are defined by

/ (x —x)> fdx (x —x)* fdx
dl = X<X , du = X=X ) (C 2)
fdx fdx

X<X X=X

The feature centre can be interpreted as a correction to the mean that accounts
for the asymmetry (skewness) of the density function f(x) with respect to its mean,
defining a new point closer to the region of higher density. When the probability
density function f(x) is symmetric, the feature centre and mean coincide (¥ = x). The
upper and lower distances, d, and d;, can be regarded as the r.m.s. of the part of the
p.d.f. above and below, respectively, its mean value. A graphical example is shown in
figure 17, for a probability density function f(x) = x> exp(—/x)/ fow £? exp(—./&) dé
that shows a long tail in one direction. The mean, X, feature centre, X, and lower
and upper distances, d; and d,, are superimposed on the probability density function.
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FIGURE 17. Mean (x) and feature (%) centres and upper (d,) and lower (d;) distances for a
sample asymmetric probability density function, f(x).

FIGURE 18. Generic structure (a) and limiting cases (b).

These definitions can be immediately extended to higher-dimensional probability
density functions.

Appendix D. Analytic geometric characterization of limiting surfaces

Consider the generic surface in figure 18(a). It consists of two planar parallel sheets
of area LW separated a distance of 2R, four halves of circular cylinders of radii R
and lengths L and W by pairs, tangent to the planar sheets that they connect and
four quarters of a sphere of radius R tangent to the circular cylinders. The resulting
surface is closed. The surface is ' along the curves of tangency among its parts
(across which curvature is discontinuous) and %° everywhere else. The area-based
joint p.d.f. of S and C is thus still applicable.

Define ¢ = L/R, n = W/R. Note that for &€ = n = 0 the surface is a sphere,
for £ > 1 and n = 0 (and vice versa) the surface is a circular tube with spherical
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FIGURE 19. §, C and A as a function of £ for the tube-like and sheet-like limits, evolving from
the sphere limit (¢ = 0). Note that the abscissa has been rescaled as In(1 + &) to show more
clearly the transition region.

caps (more stretched as & increases), and for &, n > 1 the surface is predominantly
sheet-like (see figure 18(b)).
The area and volume of this surface are:

1 1 4 3 3
_ 2 1 L _ a3 2 J
A =4nR 1+2($+n)+2n§n : V= gnR {1+4(€+n)+2nén]- (D1)
Therefore
2/3
3 3 3 3
1+ -2(E+n)+5-8n 2/3 {IJF(SJ”’)JFS"]
n= 37‘/ =R ‘1‘ 2171 . A=+/36m VA = 41 271:1 .
1+§(§+n)+%$n 1+§(§+’7)+E§Tl

(D2)

The principal curvatures, x; and k,, are both 1/R in the spherical regions, 1/R and
0 respectively in the circular cylindrical regions, and both nil in the planar regions
of such surface. Thus the dimensionless curvedness associated with each region is
Con = /R, Copy = 11/ ﬁR, Cpia = 0, respectively. The absolute value of the shape
index is S;,, = 1 for the spherical regions and S.,; = 1/2 for the circular cylindrical
regions, while its value is undefined for the planar regions. For the purpose of this
illustrative example, define such a value as y € [0, 1].

The mean values of § and C for the surface, in terms of the dimensionless
parameters & and 7, result:

1 1
1+Z(‘§+Tl)+%€’77

_ 1
S = *[SsphAsph + ScylAcyl + SplaApla] =

: . (DY)

1 1
1+§(5+77)+%$77
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3 3 1
1+4(5+’7)+2ch77} {1‘1‘2\/5(5‘*‘77)]

~ 1
C= Z[Csph Asph + CcylAcyI + Cpla Apla] = 1 1
1 — i
t5E+n)+ 5 &n
(D4)

In the limiting cases:

(i) for a sphere (6§ =n=0):S=C=1;

(ii) for a predominantly tube-like surface (£ > 1,7 =0): S~ 1/2, C ~3/2/2~1.06;

(ili) for a predominantly sheet-like surface (€ =n>>1): S~y, C =0.

Figure 20 shows the dependence on & of S, C and / for the two last cases (surfaces
becoming, as & increases, tube-like (n =0) and sheet-like (with n=¢& for simplicity)),
starting from the sphere limit (§ =0). A particular value of y has been chosen,
without loss of generality, in order to represent the limit Sy, graphically. In a
general sheet-like surface, y can take any value between 0 and 1, depending on
its particular configuration. In the limiting cases (§ =0 and n=0; §> 1 and n=0;
E=n>1)S~S,C~C.Thus, a surface predominantly blob-, tube- or sheet-like can
be distinguished based on its values of S, C, 4.
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